Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract. Spatially distant sources of neodymium (Nd) to the ocean that carry different isotopic signatures (εNd) have been shown to trace out major water masses and have thus been extensively used to study large-scale features of the ocean circulation both past and current. While the global marine Nd cycle is qualitatively well understood, a complete quantitative determination of all its components and mechanisms, such as the magnitude of its sources and the paradoxical conservative behavior of εNd, remains elusive. To make sense of the increasing collection of observational Nd and εNd data, in this model description paper we present and describe the Global Neodymium Ocean Model (GNOM) v1.0, the first inverse model of the global marine biogeochemical cycle of Nd. The GNOM is embedded in a data-constrained steady-state circulation that affords spectacular computational efficiency, which we leverage to perform systematic objective optimization, allowing us to make preliminary estimates of biogeochemical parameters. Owing to its matrix representation, the GNOM model is additionally amenable to novel diagnostics that allow us to investigate open questions about the Nd cycle with unprecedented accuracy. This model is open-source and freely accessible, is written in Julia, and its code is easily understandable and modifiable for further community developments, refinements, and experiments.more » « less
-
Abstract The Thomas Fire began on December 4, 2017 and burned 281,893 acres over a 40‐day period in Ventura and Santa Barbara Counties, making it one of California's most destructive wildfires to date. A major rainstorm then caused a flash flood event, which led to the containment of the fire. Both airborne ash from the fire and the runoff from the flash flood entered into the Santa Barbara Basin (SBB). Here, we present the results from aerosol, river, and seawater studies of black carbon and metal delivery to the SBB associated with the fire and subsequent flash flood. On day 11 of the Thomas Fire, aerosols sampled under the smoke plume were associated with high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m3, 1.05 μg/m3, and 14.93 μg/m3, respectively) and aerosol metal concentrations were consistent with a forest fire signature. Metal concentrations in SBB surface seawater were higher closer to the coastal perimeter of the fire (including 2.22 nM Fe) than further off the coast, suggesting a dependence on continental proximity rather than fire inputs. On days 37–40 of the fire, before, during, and after the flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge allowing us to estimate the input of fire products into the coastal ocean. We estimated rapid aerosol delivery during the fire event to be the larger share of fire‐derived metal transport compared to runoff from the Ventura River during the flood event.more » « less
An official website of the United States government
